Adaptive Optics Phoropters

Scot S. Olivier
Adaptive Optics Group Leader
Physics and Advanced Technologies
Lawrence Livermore National Laboratory

Associate Director
NSF Center for Adaptive Optics
Adaptive optics are a key enabling technology for LLNL projects in laser beam control and imaging.

Wavefront control capabilities are crucial for many LLNL projects involving high power lasers.

- NIF requires AO on all 192 beams
 - Enables accurate focusing of light into the target chamber for nuclear physics experiments

LLNL-built sodium-layer laser guide star AO system at Lick Observatory is world’s first.

LLNL-built AO system at Keck Observatory is world’s most powerful.
Without AO

Images of single cells in the living human retina

With AO

Visual acuity and retinal imaging degraded by aberrations in cornea and lens

Effect of AO aberration correction on the image quality of the 20/20 E

• Headquarters at UC Santa Cruz
• 11 university nodes
 – 3 primarily vision science (Rochester, Houston, Indiana)
• Over 25 partner institutions (research, education, gov., industry)
• Combines research and development in three science and technology areas:
 - Vision Science
 - Astronomy
 - Advanced Technology

Over 25 partner institutions (research, education, gov., industry)
Adaptive optics can provide unique diagnostic capability to study effects of vision correction.

Visual acuity is degraded by aberrations in the cornea and lens.

Adaptive optics correct for these aberrations.

Effect of AO aberration correction on the image quality of the 20/20 E.

- An adaptive optics system can be used to sense and correct aberrations in a subject’s eye and allow detailed studies of visual performance under a variety of conditions.
Development of compact clinical ophthalmic instrumentation

- Adaptive optics can be incorporated into fundus cameras to provide ophthalmologists with high-resolution retinal imaging for diagnostic and surgical applications.

- Adaptive optics can be used to replace the phoropter in order to allow optometrists to assess high-order aberrations in the eye while the patient directly observes the visual benefit of correction.

- Permanent correction of high-order aberrations would then be accomplished with custom laser eye surgery or contact lenses.
Adaptive optics for vision science has been developed and demonstrated at the University of Rochester.

[Diagram showing components such as laser diode, hot mirror, deformable mirror, control computer, Hartmann-Shack wavefront sensor, and lens array.]
Current adaptive optics systems for vision science are large, expensive laboratory instruments

University of Rochester vision science adaptive optics system

Conventional deformable mirror technology, which is both large and expensive, results in a large overall system due to the required magnification of the pupil of the eye to the size of the mirror.

Development of viable clinical ophthalmic adaptive optics instrumentation requires new enabling wavefront corrector technologies that are: compact, robust and inexpensive.
New adaptive optics to compensate for aberrations in the human eye could revolutionize ophthalmology

Visual acuity is degraded by aberrations in the cornea and lens.

Adaptive optics correct for these aberrations.

Without AO

With AO

Effect of AO aberration correction on the image quality of the 20/20 E

LLNL is leading a national effort to use new adaptive optics technologies to develop prototype high-resolution clinical ophthalmic imaging systems.

- These systems will aid in the diagnosis and treatment of diseases causing blindness and the development of new techniques for vision correction in the general population
- Partners include Sandia National Lab, U Rochester, USC, UC Davis, UC Berkeley, US Army Aeromedical Research Lab, Bausch & Lomb, and Wavefront Sciences
High-resolution liquid crystal spatial light modulator is commercially available from Hamamatsu.

Advantages
- Compact – 2 cm clear aperture
- Low cost – > $30k
- Ease of use – driven as a display
- High resolution correction (480x480)
 - 200 times higher than largest DM
Acknowledgement:

Project Team

LLNL

Scot Olivier – AO Group leader

Instrument Development

Charles Thompson – Electronics Engineer, project leader
Scott Wilks – Physicist, project scientist
Robert Sawvel – LEOT, optics, mechanics
Dennis Silva – EE TA, software, electronics
Brian Bauman – Optical Engineer, optical design

Instrument Integration, Test and Deployment

Don Gavel – Electronics Engineer, project leader
Abdul Awwal – Optical Scientist, project scientist
Robert Sawvel – LEOT, optics, mechanics
Dennis Silva – EE TA, software, electronics
Brian Bauman – Optical Engineer, optical I&T

UC Davis

Prof. John Werner - Senior Ophthalmology Professor
Thomas Barnes - Senior Optometrist
Joe Hardy – post-graduate researcher

University of Rochester

Prof. David Williams - Director, Center for Visual Sciences
Nathan Doble – post-graduate researcher
Adaptive optics phoropter using liquid crystal spatial light modulator

Developed at LLNL for use at the UC Davis Medical Center

- Adaptive Phoropter: correcting high-order aberration using Adaptive Optics
- Determine ultimate limits of visual acuity
- Relationship between normal aging, retinal disease and visual performance through psycho-physical testing
Complete view of adaptive optics phoropter at UC Davis using liquid crystal spatial light modulator (SLM) and Hartmann sensor. Display for psychophysical testing.
Closed Loop: External aberration

1st iteration

9th iteration

Convergence of the .25 D lens to 0.05 microns
Human Eye Data

Wavefront Sensor Image

Reconstructed wavefront
Human Eye Wavefront Data

Laser diode

Super luminescent diode

Measurement accuracy: 163 nm

Measurement accuracy: 95 nm
New optical MEMS technology could lead to a revolution in adaptive optics

Current adaptive optics systems are **large and expensive** due to available wavefront corrector technology

- The standard wavefront corrector is a deformable mirror consisting of a thin glass plate with a set of ceramic actuators glued to the back
- Typical conventional deformable mirror costs are **$1,000 per actuator**

- **Small low-cost** deformable mirrors can now be fabricated with MEMS techniques for **~$1 per actuator**
Fabrication:
Silicon micromachining (structural silicon and sacrificial oxide)

Actuation:
Electrostatic parallel plates, individual addressing of identical actuators in an array

Configuration:
140 actuators (12 x 12 w/o corners), square grid, 300 µm spacing

Surface Quality:
50 (30) nm rms
The Rochester AO Testbed
The Mirror and Driver Boards

Zygo Interferogram

Photo: Paul Bierden, BMC
New MEMS deformable mirrors will have improved characteristics – CfAO goal of 10 micron motion

- Electrostatically actuated diaphragm
 - Attachment post
 - Membrane mirror
 - Continuous mirror

 Increased gap size will increase range of motion to 4-8 microns

- Self assembly technique allows large gap sizes – 6 micron motion demonstrated – designs for 12-20 microns

- Incorporation of MEMS deformable mirrors with drive electronics will significantly reduce size and cost, improve functionality

 Low-stress membrane allows larger gaps for a given voltage – 4 micron motion demonstrated – designs for 10 microns
Acknowledgement:
Project Team

Scot Olivier : Principle Investigator
Brian Bauman : Optics / Technical Lead
Stephen Eisenbies : Mechanical
Kevin O’Brien : Business Collaboration
Jack Tucker : Tech / Optics
Steve Jones : Software / Project Lead
Don Gavel : Technical Support
Abdul Awwal : Tech. Input, LC SLM comparison

Partners include
• Sandia National Lab,
• U Rochester
• USC,
• UC Davis,
• UC Berkeley,
• US Army Aeromedical Research Lab,
• Bausch & Lomb,
• Wavefront Sciences
Early design concept for clinical adaptive optics phoropter and using a MEMS deformable mirror
Model of adaptive optics phoropter
Model of assembled prototype clinical adaptive optics phoropter on movable cart for portability
Complete assembled prototype clinical high-resolution ophthalmic imaging system using MEMS adaptive optics
Initial test data shows correction of 0.25 diopter lens to 0.01 diopter - still has some residual astigmatism.
Conclusions

- The High-resolution Ophthalmic Imaging Systems project, sponsored by the DOE Biomedical Engineering Program, has made excellent progress in producing a prototype clinical adaptive phoropter using new MEMS wavefront corrector technology.

 - The first generation of functional prototype adaptive phoropter instrumentation using MEMS deformable mirror technology will be available for clinical testing later this year.

 - This new instrumentation will provide the ophthalmic community with another tool to facilitate progress on optimization of vision correction procedures.

 - Tests of this new instrumentation will be facilitated by comparison with two laboratory adaptive optics systems for vision science at the University of Rochester (using a conventional deformable mirror) and UC Davis (using an LC SLM).

- Interested industry partners encouraged to attend CfAO Spring Industrial Advisory Board Session, March 21 in San Jose, CA