Advances in measuring accommodation with an objective aberrometer

Daniel R. Neal, PhD
James Copland
C. David Baer
Hartmut Vogelsang
Wolfgang Kern
Optana, Gmbh, Grossostheim, DE

WaveFront Sciences, Inc., Albuquerque, NM, USA

drneal@wavefrontsciences.com

Wavefront Congress
Feb 2007
Acknowledgements

- Manfred Dick – Carl Zeiss Meditec
- B. Dick, S. Buchner, Universitätsaugenklinik Bochum, Germany
- and
- M. Blum, Kunert, M. Nennstiel, Helios Klinik Erfurt, Germany
Outline

- Motivation
- Accommodative measurement approaches
 - Internal target
 - External target
 - fellow eye
 - measured eye
 - binocular vision
 - COAS – VR
 - COAS-DSA
- Conclusions
Motivation -- we need ...

- An objective, quantitative assessment of the optical / mechanical accommodation
- To excludes (or measure) effects due to multi-focal, depth of focus, pupil diameter, or neurological factors
 - (only optical-mechanical changes are measured)
- A quantitative accommodation measurement of the subject’s sphere range
- A wavefront measurement that quantifies aberrations that could reduce the benefits of an otherwise successful procedure

Improved measurements will improve corrective modalities
The eye is never still

HO-Aberrations with Soft-CL wear

Vision is a dynamic process → dynamic approaches for WS!
Measurement of accommodation requires a quantitative visual stimulus

- Known/measurable visual stimulus provided with variable magnitude
- Target must drive/motivate accommodation
- Binocular/monocular vision measurement comparison
- Natural target appearance
- Time and duration of target presentation may be important
- Patient motivation and/or training
There are still subjective factors

- The response can be highly subjective
 - Depends on experience, motivation, time-of-day and other factors
- The visual target can affect subject motivation
 - Photographs may receive better response
 - Different subjects may respond to different targets
- Binocular vision may play an important role
- Other, a priori, information may affect the process
 - Physical arrangement of target
 - Internal instrument targets may not be perceived correctly
Accommodation can be measured by moving the internal target:

- Move internal target and measure response
- Programmable steps
- Uses existing internal hardware

But how do we know if the subject is focused on the target?
External targets may provide a better subjective response

- Fellow eye
- Measured eye
- Target may be dynamically “switched”
- Adjustable target positions
Full binocular stimulation should give the best results

- COAS – VR
 - Image relayed
 - Includes IR eye tracker
 - Simultaneous wavefront and eye position
 - Full dynamic accommodation measurement
 - Static or dynamic targets
 - Frequency analysis possible
 - External or internal targets

Need “accessory” that can provide binocular stimulus
Feasibility & technical challenges binocular stimulation

Concepts for binocular stimulation designed as independent “plug-on” to COAS G210

Setup I:
- Path 1
- M1
- M2
- Correlation
- Power table height variance

Setup II:
- Electromechanical control
- M1
- M2
- Correlation
- Power table height variance

Highest demands for the mirror M2 in front of aperture!
Design

- Open frame does not give feeling of mass
- Binocular view of target
- Near and far targets
 - computer controlled sequencing
- Triggered through normal COAS acquisition
- Adjustable target positions
- Changeable target types
Realization
Measurement Process
Analysis

Zernike Coefficients (user selected) & Sphere (Zernike, all coefficients)

Plot Settings

- SCA Plot
- Coefficients Plot
- RMS Plot
- Mixed Plot

Left Ordinate
- Maximum
- Minimum
- Ticks

Right Ordinate
- Maximum
- Minimum
- Ticks

Abscissa
- Maximum
- Minimum
- Ticks

Marker

Redraw

Close
The measurement protocol is important

1. Corrected to emmetropia
 - Or set 2nd target to Spherical equivalent of base refraction

2. Near target set within 2-3 diopters of expected range

3. Target size should be adjusted for dioptric stimulus (smaller targets for younger subjects)

4. Measurement should be performed several times to “familiarize” the subject
Results

- 30 y.o. male
- Far target at 6 m distance (0.17 D)
- -6 D target change at 3 seconds
- 0 D at 6 seconds
- 30 Hz data acquisition
- 9.9 sec of data
Results

- 38 y.o. male
- Far target at 3D
- -3 D target change at 4 seconds
- 0 D at 8 seconds
- Higher orders only
- 30Hz acquisition
- 9.9 seconds of data
Normal emmetropes follow the typical accommodation trend

- All subjects emmetropic
- Measurement using far/near/far targets
- Familiar subjects – each subject measured multiple times
- 6D target used for entire set
 - Insufficient stimulus for younger subjects
- Some outliers in data
Accommodation range measurements reflect the subjects visual condition

- All subjects approximately emmetropic
- Measurement using far/near/far targets
- Unfamiliar subjects – first time use
- Clinical measurements – not all subjects had normal vision
- 6D target used for entire set
Conclusions

- Aberrometers can provide a quantitative way to accurately measure the optical accommodation, but ...
 - Subject visual stimulus is important to accurately measuring clinical accommodation
 - Complicated by subjective factors
 - Motivation, binocularity, target design, age, training
 - Well designed protocol is critical to accurate measurement
- Surprisingly little difference between internal and external targets
 - Only initial results – not a clinical study
Thank you!