Surgical data reveals that Q-Factor is important for good surgical outcome

Michael Mrochen, PhD
Michael Bueeler, PhD
Tobias Koller, MD
Theo Seiler, MD, PhD

IROC AG
Institut für Refraktive und Ophthalmochirurgie
Stockerstrasse 37
8002 Zürich
www.iroc.ch
Some history
1st Wavefront Congress, Santa Fe, 2000
Background

Spherical based ablation profiles (hyperopia)
Munnerlyn’s profile

- Pre- and post asphericity are assumed to be equal
 \[Q_1 = Q_2 = 0 \]
- Valid one for very small optical zones
- Assumes paraxial optics
- Paraxial + small optical zone allows to neglect the pre- and postoperative operative corneal curvature:

\[
a(r) = a_{\text{max}} - \frac{\Delta Dr^2}{2(n - 1)}
\]

Background

Ablation profile for sphere based on wavefront theory

- Change in corneal shape equals to wavefront aberrations

\[
a(r) = a_{\text{max}} - \frac{W(r, \phi)}{(n - 1)}
\]

- Wavefront defocus can be represented in diopter

\[
C_4 = \frac{\Delta D r_0^2}{4}
\]

- Ablation profile

\[
a(r) = a_{\text{max}} - \frac{\Delta D r^2}{2(n - 1)}
\]
Background

Change in asphericity due to a defocus correction

- The cornea has an aspherical shape
 \[
 z(x, y) = \frac{-R + \sqrt{R^2 - (1 + Q)(x^2 + y^2)}}{1 + Q}
 \]
- There is a change in the corneal asphericity when using Munnerlyn’s ablation profile
 \[
 dQ \approx -8\Delta DR_1 Q_1
 \]

Q-value and spherical aberration

Preoperative spherical aberration of the cornea

\[c_{4,\text{pre}}^0 = \frac{\sqrt{5}(Q_{\text{pre}} + 1)}{240r_{\text{pre}}^3} + \frac{\sqrt{5}(Q_{\text{pre}} + 1)^3}{320r_{\text{pre}}^5} + \frac{\sqrt{5}(Q_{\text{pre}} + 1)^5}{448r_{\text{pre}}^7} + \frac{5\sqrt{5}(Q_{\text{pre}} + 1)^7}{3072r_{\text{pre}}^9} + \ldots \]

Postoperative spherical aberration of the cornea

\[c_{4,\text{post}}^0 = \frac{\sqrt{5}(Q_{\text{post}} + 1)}{240r_{\text{post}}^3} + \frac{\sqrt{5}(Q_{\text{post}} + 1)^3}{320r_{\text{post}}^5} + \frac{\sqrt{5}(Q_{\text{post}} + 1)^5}{448r_{\text{post}}^7} + \frac{5\sqrt{5}(Q_{\text{post}} + 1)^7}{3072r_{\text{post}}^9} + \ldots \]

Induced spherical aberration

\[\Delta c_4^0 = c_{4,\text{pre}}^0 - c_{4,\text{post}}^0 = 0 \]
Postoperative corneal asphericity that does not induce spherical aberration

SPHERICAL MYOPIA CORRECTION [D]

POST-OP q-VALUE
Distribution of asphericity in a normal population

Mainly negative Q-values

The mean shape of the human cornea
P.M. KIELY, G. SMITH and L.G. CARNEY
OPTICA ACTA, 1982, Vol. 29, No. 8, 1027-1040

PD Dr. Michael Mrochen, 3/7/07
The role of intraocular structures

Corneal aberrations

Wavefront

Total aberrations
Spherical aberration vs. Q-value

Fit Resultate:
$r = 0.55415$
$p < 0.0001$

- Significant correlation
- Extreme large scatter in data set
- Impact of intraocular structures
Ideal Q-value for zero spherical aberration

- Navaro eye model (others were used too)
- Variation of corneal curvatures according to the amount of myopic correction
- Variation of the lens power and lens asphericity according to their typically published ranges
Data set for Navaro eye model

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Low-power lens</th>
<th>Standard Lens</th>
<th>High-power lens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radii of curvature (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r2</td>
<td>13.78</td>
<td>10</td>
<td>7.66</td>
</tr>
<tr>
<td>r3</td>
<td>-8.27</td>
<td>-6</td>
<td>-4.59</td>
</tr>
<tr>
<td>Axial thickness (d2)</td>
<td>2.9</td>
<td>3.6</td>
<td>4.5</td>
</tr>
<tr>
<td>Surface powers (D)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>6</td>
<td>8.27</td>
<td>10.8</td>
</tr>
<tr>
<td>F3</td>
<td>10</td>
<td>13.78</td>
<td>18</td>
</tr>
<tr>
<td>Equivalent power (D)</td>
<td>15.88</td>
<td>21.76</td>
<td>28.18</td>
</tr>
<tr>
<td>Assumed depth of anterior chamber</td>
<td>4.1</td>
<td>3.6</td>
<td>3</td>
</tr>
</tbody>
</table>

- \(Q = -6.1 \)
- \(Q = -3.1 \)
- \(Q = -0.1 \)

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Mean value</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corneal radius (mm)</td>
<td>7.86</td>
<td>7.0 to 8.8</td>
</tr>
<tr>
<td>Corneal power (D)</td>
<td>42.74</td>
<td>38 to 48</td>
</tr>
<tr>
<td>Depth of anterior chamber (mm) incl. corneal thickness</td>
<td>3.68</td>
<td>2.8 to 4.6</td>
</tr>
<tr>
<td>Equivalent power of lens (D)</td>
<td>21.3</td>
<td>15 to 29</td>
</tr>
<tr>
<td>Equivalent power of eye (D)</td>
<td>60.1</td>
<td>51 to 70</td>
</tr>
</tbody>
</table>

189 modified eye models
Ideal Q-value for zero spherical aberration

Medium Power Cornea
Highly negative Q of Lens

Medium Power Cornea
Mean Q of Lens

Medium Power Cornea
Q of lens close to zero

- Ideal corneal asphericity Q
- Pre-op refraction [D]

- High Power Lens
- Medium Power Lens
- Low Power Lens

PD Dr. Michael Mrochen, 3/7/07
Ideal Q-value for zero spherical aberration

Lens with highly negative Q

Lens with mean negative Q

Lens with Q close to zero

PD Dr. Michael Mrochen, 3/7/07
The ideal Q-value depends mainly on the optical characteristics of the intraocular structures.

--> Theoretically individual wavefront corrections of higher orders with Q-value based profiles are not possible.
Ideal Q-value for zero spherical aberration – Ray tracing
Ideal Q-value for zero spherical aberration

- Ray tracing algorithm
- Calculated ideal corneal asphericity for zero spherical aberration
- Data set generated
- Pupil size 6.0 mm
Theoretical Results
individual eye models

Theoretical eye models based on "mean values"
do not help to determine the ideal Q-value after corneal laser surgery

-> customized eye model
Theoretical Results

Ray tracing profiles

<table>
<thead>
<tr>
<th>Patient</th>
<th>Eye</th>
<th>Q-value</th>
<th>Spherical Aberration [microns]</th>
<th>Q-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>J.F.</td>
<td>OD</td>
<td>-0.58</td>
<td>0.04</td>
<td>-0.43</td>
</tr>
<tr>
<td>J.F.</td>
<td>OS</td>
<td>-0.43</td>
<td>0.06</td>
<td>-0.22</td>
</tr>
<tr>
<td>S.W.</td>
<td>OD</td>
<td>0.75</td>
<td>-0.29</td>
<td>-0.35</td>
</tr>
<tr>
<td>S.W.</td>
<td>OS</td>
<td>0.79</td>
<td>-0.27</td>
<td>-0.23</td>
</tr>
<tr>
<td>F.E.</td>
<td>OD</td>
<td>-0.60</td>
<td>0.02</td>
<td>-0.51</td>
</tr>
<tr>
<td>D.A.</td>
<td>OD</td>
<td>-0.37</td>
<td>-0.07</td>
<td>-0.65</td>
</tr>
<tr>
<td>D.A.</td>
<td>OS</td>
<td>-0.43</td>
<td>-0.07</td>
<td>-0.71</td>
</tr>
<tr>
<td>E.M.</td>
<td>OD</td>
<td>-0.16</td>
<td>-0.06</td>
<td>-0.40</td>
</tr>
<tr>
<td>B.B.</td>
<td>OD</td>
<td>0.50</td>
<td>-0.22</td>
<td>-0.34</td>
</tr>
<tr>
<td>B.B.</td>
<td>OS</td>
<td>0.84</td>
<td>-0.13</td>
<td>0.36</td>
</tr>
<tr>
<td>W.M.</td>
<td>OD</td>
<td>-0.03</td>
<td>-0.08</td>
<td>-0.34</td>
</tr>
<tr>
<td>B.M.</td>
<td>OS</td>
<td>-0.20</td>
<td>0.01</td>
<td>-0.15</td>
</tr>
</tbody>
</table>

Refractive range: +8 D to -12 D
Clinical outcomes study group

N = 35 eye (15 right & 20 left eyes)

RMS < 0.4 μm; 6.0 mm pupil

Tobias Koller et al: Q-factor customized ablation profile for the correction of myopic astigmatism J CATARACT REFRACT SURG - VOL 32, APRIL 2006
Clinical outcomes – study group

<table>
<thead>
<tr>
<th>Table 3. Safety of wavefront-guided versus custom-Q treatment.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA Type/Group</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>BCVA</td>
</tr>
<tr>
<td>WG</td>
</tr>
<tr>
<td>Custom-Q</td>
</tr>
<tr>
<td>Low contrast VA</td>
</tr>
<tr>
<td>WG</td>
</tr>
<tr>
<td>Custom-Q</td>
</tr>
<tr>
<td>Glare VA</td>
</tr>
<tr>
<td>WG</td>
</tr>
<tr>
<td>Custom-Q</td>
</tr>
</tbody>
</table>

BCVA = best corrected visual acuity; Custom-Q = Q-factor customized treated eyes; VA = visual acuity; WG = wavefront-guided treated eyes

Tobias Koller et al: Q-factor customized ablation profile for the correction of myopic astigmatism J CATARACT RE FRACT SURG - VOL 32, APRIL 2006
Summary

- A prolate shape does not essentially mean a good optical quality; some eyes require an oblate shape.
- Q-value based ablation profiles are able to maintain the preoperative spherical aberration, if patients are preselected.
- Q-value based ablation profiles are not able to correct for preoperative spherical aberration.
- However, there were no clinical difference in Q-value versus wavefront-guided treatments (small study group).
- Ideal correction is only given by combining topography, wavefront and biometry.
Conclusions

Q-value based ablation profiles are a good solution for customized corrections,

if wavefront measurements are not available or

if there are no significant preoperative optical aberration present \((\text{rms} < 0.3 \ \mu\text{m}; \ 6 \ \text{mm pupil})\)
Thank you