Astigmatic Refraction
Using Peaks of Interferogram MTF for a Talbot Moiré Interferometer

Ed Sarver, PhD
Acknowledge coauthors

• Tony Y. Van Heugten
• Thomas D. Padrick
• Max T. Hall
Ronchi Ruling

Set of opaque, parallel bars with 50% duty cycle
Ronchi Grid

Two Ronchi rulings oriented orthogonal to each other
Ronchi Grid Parameters

\[p \]
\[p/2 \]
Ronchi Grid as Transmission Function

Wavefront propagation

G1
d
Observation plane
For simplicity, let’s model amplitude transmission\(^1\) as a sinusoid...

\[
T(x, y) = \frac{1}{2} \left[1 + \cos\left(\frac{2\pi}{d} x\right) \right]
\]

Fresnel diffraction leads to intensity distribution given by...

\[I(x, y) = \frac{1}{4} \left[1 + 2A \cos\left(\frac{2\pi}{p} x\right) + \cos^2\left(\frac{2\pi}{p} x\right) \right] \]

where

\[A = \cos\left(\frac{\pi \lambda}{p^2} d\right) \]

A = \cos \left(\frac{\pi \lambda}{p^2} d \right)

A = \pm 1 \text{ provides maximum contrast and exact replica of transmission plane. Corresponding } d \text{ location is called } \text{Talbot plane}.
Now we place a second Ronchi Grid at a Talbot distance d...
...And rotate the second grid
This superposition of grid patterns leads to a moiré pattern. The combination of the moiré effect with the Talbot distance requirement leads to the name...

Talbot Moiré Interferometer
Fourier domain primary peaks of G_1 are...
Fourier domain primary peaks of \textit{rotated} G2 are...
In the spatial domain the propagated transmission of G_1 is multiplied by the transmission function at G_2.

The equivalent operation in the Fourier domain is convolution…
Two primary peaks of MTF of Intensity distribution at G2
What happens when the incident wavefront at G1 has defocus?
With diverging incident wavefront...

P2 = S x P1

S = period scale factor
 = 1 – (Dxd)/1000
Fourier domain for scaled G1...

- No defocus
- Diverging wavefront
- Converging wavefront
After modulation by G2...
Apparent rotation due to defocus…
Apparent rotation due to defocus..
Apparent rotation due to defocus..
Instead of pure defocus, what about astigmatic wavefront?
Astigmatic wavefront aligned with system axes...

- No defocus
- Diverging wavefront in u axis direction
- Converging wavefront in v axis direction
General Astigmatic wavefront

\[
\begin{bmatrix}
x' \\
y'
\end{bmatrix} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} sx \\ 0 \end{bmatrix} \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
\]

\[A = c^2sx + s^2sy\]
\[B = cs(sy - sx)\]
\[C = s^2sx + c^2sy\]

Sx and Sy are related to power in the principal axes.
Given MTF peaks, need to calculate matrix coefficients A, B, and C
Compute Affine Transform…

Since for each G1 point:

\[
R'_N = \begin{bmatrix}
A & B \\
B & C
\end{bmatrix} R_N
\]

Solve

\[
x = \left(A^T A \right)^{-1} (A^T b)
\]

Where…

\[
A = \begin{bmatrix}
R0_x & R0_y & 0 \\
0 & R0_x & R0_y \\
R1_x & R1_y & 0 \\
0 & R1_x & R1_y \\
R2_x & R2_y & 0 \\
0 & R2_x & R2_y \\
R3_x & R3_y & 0 \\
0 & R3_x & R3_y
\end{bmatrix}, \quad b = \begin{bmatrix}
R0_x' \\
R0_y' \\
R1_x' \\
R1_y' \\
R2_x' \\
R2_y' \\
R3_x' \\
R3_y'
\end{bmatrix}, \quad x = \begin{bmatrix}
A \\
B \\
C
\end{bmatrix}
\]
Then, find eigenvalues...

\[\lambda_{1,2} = \frac{(A + C) \pm \sqrt{(A - C)^2 + 4B^2}}{2} \]

Note: ALWAYS two real eigenvalues.
Scale factors and axis…

\[S_{1,2} = \frac{1}{\lambda_{1,2}} \]

\[\text{Axis} = \tan^{-1}\left(\frac{\lambda_1 - A}{B}\right) \]

Note: Use atan2 function to handle zero valued B.
Principal powers...

\[P_{1,2} = \frac{(1 - S_{1,2})1000}{d} \]

Note: \(d \) is the Talbot plane distance.
Results for model eye

• 5 exams
 – Sphere
 – Mean = -4.26 D
 – SD = 0.004
 – Cylinder
 – Mean = -2.90
 – SD = 0.008
• Axis
 – Mean = 92
 – SD = 0
Results for 46 year old male

Spatial domain interferogram

MTF with peaks
<table>
<thead>
<tr>
<th>Trial</th>
<th>Sphere</th>
<th>Cylinder</th>
<th>Axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.02</td>
<td>-1.60</td>
<td>69.00</td>
</tr>
<tr>
<td>1</td>
<td>-0.11</td>
<td>-1.38</td>
<td>69.00</td>
</tr>
<tr>
<td>2</td>
<td>0.03</td>
<td>-1.58</td>
<td>67.00</td>
</tr>
<tr>
<td>3</td>
<td>-0.10</td>
<td>-1.61</td>
<td>71.00</td>
</tr>
<tr>
<td>4</td>
<td>-0.07</td>
<td>-1.47</td>
<td>71.00</td>
</tr>
<tr>
<td>5</td>
<td>-0.02</td>
<td>-1.38</td>
<td>70.00</td>
</tr>
<tr>
<td>6</td>
<td>-0.03</td>
<td>-1.55</td>
<td>69.00</td>
</tr>
<tr>
<td>7</td>
<td>-0.09</td>
<td>-1.44</td>
<td>68.00</td>
</tr>
<tr>
<td>8</td>
<td>-0.28</td>
<td>-1.26</td>
<td>68.00</td>
</tr>
<tr>
<td>9</td>
<td>-0.28</td>
<td>-1.23</td>
<td>69.00</td>
</tr>
<tr>
<td>mean</td>
<td>-0.09</td>
<td>-1.45</td>
<td>69.10</td>
</tr>
<tr>
<td>sd</td>
<td>0.11</td>
<td>0.14</td>
<td>1.29</td>
</tr>
</tbody>
</table>
Discussion

• The sphere, cylinder and axis can be extracted from the MTF of the interferogram of a Talbot moiré wavefront sensor

• Processing time is very fast: 46 ms on a 3.6 GHz PC
 – Fast enough for real time acquisition and display
Conclusion

• MTF calculation method is fast and simple means to process Talbot moiré wavefront sensor images
• May be especially helpful for real-time display of refraction
• May also be helpful in augmenting or providing a quality control check for a full wavefront reconstruction
Thank you!