S. Schumacher
M. Fromm, U. Oberheide
H. Hoffmann, G. Gerten,
A. Wegener, H. Lubatschowski

Femtosecond Application in the
Restoration of Accommodation

Wavefront & Presbyopia Refractive Corrections Congress
February 14-17, 2008
Presbyopia - preconditions

Accommodation fails (according to Helmholz Theory):
- loss of elasticity
- harding of the lens tissue

However:
- Ciliary muscle stays active
- Lens capsule stay elastic
Presbyopia - preconditions

- Ray Myers and Ron Krueger first reported on the concept of laser modification of the crystalline lens in 1998
- First experimental results 2001 by Krueger et.al. with ns-pulses*

Accommodation fails (according to Helmholtz Theory):
- loss of elasticity
- harding of the lens tissue

However:
- Ciliary muscle stays active
- Lens capsule stay elastic
Concept of fs-Lentotomie

- overcome lens-hardening
- regain lens flexibility

Smooth µm cuts inside the crystalline lens to create gliding planes

fs laser pulse

cut

transparent tissue
cutting pattern inside the lens tissue
Concept of fs-Lentotomy

- overcome lens-hardening
- regain lens flexibility

Smooth μm cuts inside the crystalline lens to create gliding planes.

![Diagram of fs laser pulse cutting through transparent tissue](image)
Flexibility Increase on human donor lenses

Average increase: 97 (±23) μm*
Approx. ~ 2-3 dpt*
Setup of Lens deformation ability change

Fisher’s spinning lens test*

human donor lens 66 years

*Fisher, The elastic constant of the human lens, J. Physiol., 1971
Change of normalized thickness of human donor lenses after treatment

1620 rpm

Normalized lens thickness η after laser treatment

Normalized lens thickness η before laser treatment

Increase in normalized lens thickness

Decrease in normalized lens thickness

Increase in flexibility

Average normalized thickness change increases 16%

Maximum gain up to 67%
Existing wound healing animal study*

- 6 living Rabbit Eyes:
- Ring and starlike pattern

After 3 months, the rabbit lenses showed good transparency, with only 1 rabbit having cataract formation, unrelated to the laser.

*Krueger et al, First safety study of femtosecond laser photodisruption in animal lenses: Tissue morphology and cataractogenesis, J. Cataract and Refractive Surgery, 2005
In-vivo animal study

- preliminary results -
In-vivo animal study

15 Chinchilla Bastard rabbits
- fs-lentotomie treatment
 - Steering wheel pattern
- Treatment on one eye
- follow up in progress

Investigations
- OCT slit lamp*
- Scheimpflug images**

*SL-OCT™, Heidelberg Engineering GmbH, Germany
** Topcon SL-45, Topcon Optical Instruments, Japan
Results

- In all 15 rabbits the fs-lentotomie was successful
- Alignment of sedated rabbit eyes is challenging

rabbit A

post surgery
Results

- In all 15 rabbits the fs-lentotomie was successful
- Alignment of sedated rabbit eyes is challenging
- Pattern is fading 14 days post surgery

14 days follow up rabbit A

post surgery
OCT images

- Monitoring of the cut

post laser surgery

rabbit A
OCT images

- Controll of cataract formation

14 days post surgery

rabbit A
Scheimpflug images

• transparency of the lens is controlled to exclude pre-existing opacities and other abnormalities

pre surgery

rabbit B
Scheimpflug images

- transparency of the lens is controlled to exclude pre-existing opacities and other abnormalities

- Scattering due to laser cuts is clearly visible. Larger gas bubbles scatter stronger than small bubbles

post surgery

rabbit B
Scheimpflug images

post surgery

14 days follow up

rabbit B
Conclusion

- Increase of deformation ability of the lens after fs laser treatment
 - Direct anterior – posterior thickness increase

- Cutting inside *in-vivo* rabbit lenses was achieved
 - Alignment of sedated *in-vivo* rabbits/patients challenging

- OCT and Scheimplug images are a necessary and suitable tool for the cutting control

- 14 days follow up showed no cataract formation
 - Pattern is fading
 - Localized incisions and no spreading of defect visible

- Long term follow up (six month) in progress
 - Slitlamp, OCT, Scheimpflug, micromorphology
Thank you

Acknowledgements
German Ministry of Research and Education (BMBF)
FKZ 13N8709 & 13N8712