Designing Phase Diversity Wavefront Sensors for Ophthalmology

T.D. Raymond, P. Pulaski, S. Farrer, and D.R. Neal
AMO Wavefront Sciences, Albuquerque, NM 87123
TD.Raymond@amo-inc.com

A.H. Greenaway, D.M. Faichnie, H.I. Campbell, and G.N Craik
Heriot Watt University, www.waf.eps.hw.ac.uk
Phase Diversity Wavefront Sensors (PDWS) offer a number of potential advantages when used in the ophthalmic field.

- Commonly known as “Curvature Sensors”
- Wavefront is connected to intensity via propagation physics

\[
k \left(\frac{I_{-1} - I_{+1} \delta I}{z_{-1} - z_{+1} \delta z} \right) = -i \nabla^2 \varphi - \nabla I \cdot \nabla \varphi
\]

- **Multi-plane imaging system (like a diffractive IOL for presbyopia!)**
- High spatial resolution
- Useful on scintillated beams with discontinuous wavefronts

- **Ophthalmic applications include:**
 - Aberrometry (implanted **multi-focal IOLs**)
 - **Multi-focal IOL** metrology
 - Cataract imaging
Modern PDWS function much like diffractive IOLs.

- **Essential hardware elements**
 - Lens or Lens System
 - Diffractive Optical Element
 - Camera

- **Optical configuration governs**
 - Location of sample planes
 - Magnification of images

\[
\frac{1}{f_m} = \frac{m}{f_g}
\]

Blanchard and Greenaway
Useful features of PDWS to exploit in ophthalmic applications:

- **Pupil Plane Imaging**
 - Provides a real image of the pupil
 - Accommodates variability in iris location, size and shape
 - May be critical to resolve phase on speckled beams

- **Telecentric Imaging**
 - Equally spaced sample planes with equal magnification on all images
 - Simplifies the sensor alignment, calibration, and data processing

- **Dynamic range and wavefront sensitivity are controlled by**
 - Sample plane spacing
 - Camera digitization bit depth
 - Unlike SHWS these are not coupled to the spatial resolution!
Ophthalmic aberrometer designs for SHWS and PDWS are optimized with different constraints.

Must we precondition the wavefront when using a PDWS?
The large dynamic range of PDWS can be used to simplify the design considerably.

Analytic Solutions with Pupil Plane and Telecentric Imaging and Static Optics

<table>
<thead>
<tr>
<th>$t=f_1$</th>
<th>$t=f$</th>
<th>$t=f=v$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s = 0$</td>
<td>$s = f - \frac{f^2}{f_1}$</td>
<td>$s = f - \frac{f^2}{f_1}$</td>
</tr>
<tr>
<td>$u_m = f_1 \left(1 - \frac{f_1}{f} + \frac{f_1}{v}\right) - \frac{m f_1^2}{f_g}$</td>
<td>$u_m = f^2 \left(\frac{f_1}{f^2 + (-f + v) f_1} - \frac{m}{f_g}\right)$</td>
<td>$u_m = f_1 - \frac{f^2 m}{f_g}$</td>
</tr>
<tr>
<td>Mag = $-\frac{v}{f_1}$</td>
<td>Mag = $1 - \frac{v}{f} - \frac{f}{f_1}$</td>
<td>Mag = $-\frac{f}{f_1}$</td>
</tr>
</tbody>
</table>
Design tradeoffs can be established by comparing design performance in a spreadsheet.

- General trends are easily established
- Design points can be established easily
- Non-viable designs can be eliminated without further consideration
Ray tracing shows this sensor can handle beams with +/-10 diopters of defocus.

- **System Values:**
 - \(f = 100 \text{mm} \), 25 mm dia
 - \(f_1 = 300 \text{mm} \), 38 mm dia
 - \(f_g = 500 \text{mm} \), 9 um period
- 300 mm stand off distance
- 20 \(\mu \text{m} \) spatial resolution
- <0.01 Diopter defocus resolution
- *No moving parts*
Conclusions

• PDWS work like a diffractive IOL—multi-plane imaging

• Identified important design features for ophthalmic PDWS
 – Pupil Plane Imaging
 – Telecentric Imaging

• Introduced a simple, effective design procedure for PDWS
 – Analytic solution of paraxial equations
 – Spreadsheet-based design tool

• Advantages
 – Complex optical systems are easily analyzed
 – Reduces design time
 – Improves performance

The authors would like to thank Mike Kinney (AMO) for his technical contributions