The Visiogen Synchrony Dual Optic Accommodating Intraocular Lens

Stephen D. McLeod, MD
Theresa M. and Wayne M. Caygill, MD Endowed Chair
Professor and Chairman
Department of Ophthalmology
University of California San Francisco
Accommodating IOLs

- Current accommodating IOL designs achieve focal point shift by forward displacement of the lens optic
- The power effect of forward movement is dependent on the power of the lens
- For most lens powers implanted, the observed degree of movement (1mm) produces minimal accommodative change
Single Optic Accommodating IOL Efficiency

- \(\Delta D_c \sim \left(\frac{D_m}{12} \right) \Delta s \)
 - \(\Delta D_c \) = Change in optical power
 - \(D_m \) = IOL power (moving optic)
 - \(\Delta s \) = Change in lens position (mm)
Visiogen Synchrony
Accommodating IOL

- Design a lens with a standardized high power moving convex optic
- Bring image to focus with fixed, appropriately powered concave lens
- i.e.: a dual optic IOL system
Dual Optic versus Single Optic Accommodating IOL Efficiency

Dual Optic Accommodating IOL vs. 19.0 D IOL

Accommodation (diopters)

Forward lens movement (mm)
Visiogen Accommodating IOL

Far

Near

Spring haptic

2.2 mm

1.5 mm

3.7 mm
Synchrony Accommodating IOL

- One piece silicone lens
- 5.5 mm anterior optic
- 6.0 mm posterior optic
- 9.5 mm length
- 9.8 mm wide
Synchrony Accommodating IOL

- 2.2 mm thick when compressed
- 3.7 mm wide in accommodation
- Anterior lens 32 D
- Posterior lens -4 to -16D
Synchrony Accommodating IOL

Aqueous Channels

- Support the anterior bag while providing fluid channels
- Facilitate fluid exchange
- Tent anterior capsule preventing capsule/IOL sealing and rubbing
Synchrony Accommodating IOL

Posterior Wings
- Insure proper posterior position
- Compensate for capsular bag size variations
- Prevent decentration
Synchrony Accommodating IOL

Spring Haptics
- Bias the system open
- Provide consistent separation force
Synchrony Preloaded Injector

- Requires only BSS for lubrication
- Incision size 3.6 – 3.8 mm
Clinical Summary

- US FDA trial underway – enrollment completed, gathering information
- Extensive international experience with design prior to initiation of FDA trials
Uncorrected Acuities

6 months: n=97 pts
12 months: n=71 pts
24 months: n=63 pts
36 months: n=39 pts

Distance
Intermediate
Near

Synchrony Dual Optic Accommodating IOL. AAO 2007

Ossma IL. AAO 2007
QOL Survey - Spectacle Independence

Perform Activities without glasses at near

When asked about activities that they could do without glasses at near, over 90% of patients could read menus and newspapers without glasses, and about 74% could read fine print (label on eye drop bottle).

N=27 patients

Alarcon R. ASCRS 2007
Synchrony patients had SIMILAR OR LESS visual disturbances to standard monofocal IOLs.

Only 1 patient had moderate glare, and only 2 had moderate to severe halos. More than 90% of patients had none or mild glare and halo.
Capsular Fibrosis

2 years after surgery minimal capsular opacification observed

Bohorquez. ASCRS 2007
Patient in US Trial – 2 years out

Mark Packer, MD (Eugene, OR) patient, Visiogen in-house data
Lens movement

Cycloplegic Distance

Near Stimulation of the fellow eye
Conclusions

- Dual Optic accommodating IOL’s have the potential to provide greater accommodation than single optic IOL’s
- Safety data available for over 700+ implantations
- Provides functional near, intermediate and far vision
- No evidence of clinically significant halo or glare
- International data: almost 80% of patients completely spectacle independent, and more than 90% can read newspapers and menus
- Long term results demonstrate stability out 3 years